B.Pharm I Year I Semester (R15) Supplementary Examinations February 2023 REMEDIAL MATHEMATICS

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: (10 X 02 = 20 Marks)

- Find the sum of an infinite GP whose first term is 28 and second term is 4. (a)
- If α , β are the roots of $3x^2 5x + 7 = 0$ then find the value of $\alpha^3 + \beta^3$. (b)
- Find the value of cot 150. (c)
- Simplify $\frac{\sin\theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta}$ (d)
- Find the angle which the straight line $y = \sqrt{3}x 4$ makes with the Y-axis. (e)
- Find the equation of straight perpendicular to line 5x 3y + 1 = 0 and passing through point (4, -3). (f)
- Evaluate $\lim_{x\to 0} \frac{\sin(a+bx)-\sin(a-bx)}{x}$. Evaluate $\int_0^3 \frac{x \, dx}{\sqrt{x^2+16}}$. (g)
- (h)
- Form the differential equation for the family of curves x2+y2=a2. (i)
- Find the Laplace transformation of tet. (i)

PART - B

(Answer all the questions: 05 X 10 = 50 Marks)

Find the sum of the series: $(45 + 47 + 49 + \dots + 99)$. 2

- If $x^2 11x + a = 0$, $x^2 14x + 2a = 0$ have a common root, then find 'a'. 3
- 4

- Prove that $\sin^2\left(\alpha-\frac{\pi}{4}\right)+\sin^2\left(\alpha+\frac{\pi}{2}\right)-\sin^2\left(\alpha-\frac{\pi}{2}\right)=\frac{1}{2}.$ OR Find the values of: (i) $\sin 22\frac{1^0}{2}$. (ii) $\cos 22\frac{1^0}{2}$. (iii) $\tan 22\frac{1^0}{2}$. (iv) $\cot 22\frac{1^0}{2}$. 5
- 6 Find the equation of a line whose slope is ½ and y-intercept equal to -5/4.

- 7 Transform the equation x + y + 2 = 0 into the normal form. (a)
 - If the mid points of a triangle are (3, -3), (3, 1) and (1, 1) respectively then find the vertices of the (b) triangle.
- Evaluate: 8

$$\int_{0}^{\frac{\pi}{4}} \log(1+\tan x) \, dx$$

OR

- Find the derivative of $\sin^2 x$ with respect to x. 9
- Find the Laplace transform of e^{3t}sn²t. 10

OR

11 Solve
$$\frac{dy}{dx} + \frac{y^2 + y + 1}{x^2 + x + 1} = 0$$
.

Code: 15R00101

B.Pharm I Year I Semester (R15) Supplementary Examinations September 2022 REMEDIAL MATHEMATICS

Time: 3 hours

Max. Marks: 70

PART - A

(Compulsory Question)

Answer the following: (10 X 02 = 20 Marks) 1

- Find the sum of an infinite GP whose first term is 28 and second term is 4. (a)
- (b) If α, β are the roots of $3x^2 5x + 7 = 0$ then find the value of $\alpha^3 + \beta^3$.
- Find the value of cot 750. (c)
- Simplify $\frac{(\sin 2\theta)}{(1+\cos 2\theta)}$ (d)
- Find the area of the triangle formed by the points (0, 0), (1, 0) and (0, 1). (e)
- Find the angle between the lines 3x y + 5 = 0, x + 3y 2 = 0. (f)
- Find the derivative of $x \log x$ with respect to x. (g)
- Find $\int \frac{1}{\cos hx + \sin hx} dx$ on R. (h)
- Find the order and degree of $\left[\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3\right]^{\left(\frac{6}{5}\right)} = 6y$. (i)
- Find the Laplace transform of $(t^2 + 1)^2$. (i)

PART - B

(Answer all the questions: 05 X 10 = 50 Marks)

- If $x^2 11x + a = 0$, $x^2 14x + 2a = 0$ have a common root, then find 'a'.
 - Find the 12th term of the series 2, 5, 8,

- If 4, 12, 20, are in AP then find the sum of first 20 terms. 3
 - If α , β are the roots of $x^2 + x + 1 = 0$, then find $\alpha^2 + \beta^2$.
- If A, B and C are angles of a triangle, then prove that: 4 cos2A + cos2B + cos2C = -4cosA cosB cosC - 1.

- If $A+B+C=\frac{\pi}{2}$, then show that $\sin^2 A+\sin^2 B+\sin^2 C=1-2\sin A\sin B\sin C$.
- Find the distance between $(a\cos\theta, 0)$, $(0, a\sin\theta)$. 6
 - Find the area of the triangle formed by (a + 3, a 2), (a 4, a + 5) and (a, a).

- 7 If the slopes of the line joining the points A(x, 2), B(6, -8) is -5/4, find the value of x.
 - Find the equation of a line whose slope is ½ and y-intercept equal to -5/4.
- Evaluate $\int (\sec x \tan x + \frac{3}{x} 4) dx$. Evaluate $\lim_{x \to a} \frac{x^{12} a^{12}}{x a}$. 8

OR

- (a) Evaluate $\lim_{x\to 0} \frac{e^{3x}-1}{x}$. (b) Find $\int e^{\log \mathbb{Q} + \tan^2 x} dx$.
- (a) Find Laplace transform of $sin(wt + \alpha)$. 10
 - (b) Solve $xdy + 2ydx = 2y^2xdy$.

OR

Solve $y - \frac{xdy}{dx} = a(y^2 + \frac{dy}{dx})$. 11

B.Pharm I Year I Semester (R15) Supplementary Examinations April/May 2022 REMEDIAL MATHEMATICS

(For 2015, 2016, 2017 & 2018 admitted batches only)

Time: 3 hours

Max. Marks: 70

PART – A (Compulsory Question)

1 Answer the following: (10 X 02 = 20 Marks)

- (a) If α , β are the roots of $x^2 3x + 5 = 0$, then find the value of $\alpha^2 \beta^2$.
- (b) Find the sum of infinite terms of $4, -2, 1, -\frac{1}{2} \dots \dots$
- (c) Find the value of cot 15°.
- (d) Simplify $\frac{\sin \theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta}$
- (e) Find the equation of the line passing through (3, 4) and (5, -1).
- (f) Find the angle between the lines x y + 4 = 0, y = 7.
- (g) Find the derivative of $x \cos x$ with respect to x.
- (h) Find $\int \frac{1}{1+\cos x} dx$ on R.
- (i) Find the order and degree of $\left[\left(\frac{dy}{dx} \right)^{\frac{1}{2}} + \left(\frac{d^2y}{dx^2} \right)^{\frac{1}{3}} \right]^{\frac{1}{4}} = 0.$
- (j) Find the Laplace transform of sin 2t cos 3t.

PART – B (Answer all the questions: $05 \times 10 = 50 \text{ Marks}$)

- 2 (a) If α , β are the roots of $3x^2 5x + 7 = 0$ then find $\alpha^3 + \beta^3$.
 - (b) Find the sum to infinite terms of GP, $\frac{1}{2} + \frac{1}{6} + \frac{1}{18} + \frac{1}{54} + \cdots$ OR
- 3 (a) Find the sum of the series: $(45 + 47 + 49 + \dots + 99)$.
 - (b) If the roots of the equation $12x^2 + mx + 5 = 0$ are in the ratio 5:4 then find m.
- 4 If A, B and C are angles of a triangle, then prove that: $\cos 2A + \cos 2B \cos 2C = 1 4 \sin A \sin B \cos C$.

If $A + B + C = \frac{\pi}{2}$, then show that $\sin 2A + \sin 2B + \sin 2C = 4 \cos A \cos B \cos C$.

- 6 (a) Find the angle made by the line $x + \sqrt{3}y 6 = 0$ with the positive direction of X-axis.
 - (b) Find the ratio in which X-axis divides the line segment joining (2, -3) and (5, 7).

OR

- 7 (a) Find the point of trisection of the line segment joining (-5, 2), (3, 6).
 - (b) Reduce the equation 6x+3y-5=0 to the slope intercept form and find its slope and y-intercept.

Contd. in page 2

- 8 (a) Evaluate $\int \frac{[(3x+1)^2]}{2x} dx$.
 - (b) Find the derivative of $\sin^2 x$ with respect to x.

OF

- 9 (a) Differentiate $x^2 \tan x$.
 - (b) Evaluate $\int \frac{2x^3-3x+5}{2x^2} dx$.
- A bacterial culture, growing exponentially increases from 200 to 500 grams in the period from 6AM to 9AM. How many grams will be present at noon?

OR

- 11 (a) Find $L(t^3 + 5\cos t)$.
 - (b) Solve the differential equation $\frac{dy}{dx} + \sqrt{\frac{1+y^2}{1+x^2}} = 0$.

. Page 2 of 2